A line is a common tangent to the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$. If the two points of contact $(a, b)$ and $(c, d)$ are distinct and lie in the first quadrant, then $2(a+c)$ is equal to
Circle: $(x-3)^{2}+y^{2}=9$
Parabola: $y^{2}=4 x$
Let tangent $y=m x+\frac{a}{m}$
$y=m x+\frac{1}{m}$
$m^{2} x-m y+1=0$
the above line is also tangent to circle
$(x-3)^{2}+y^{2}=9$
$\therefore \perp$ from $(3,0)=3$
$\left|\frac{3 m^{2}-0+1}{\sqrt{m^{2}+m^{4}}}\right|=3$
$\left(3 m^{2}+1\right)^{2}=9\left(m^{2}+m^{4}\right)$
$6 m^{2}+1+9 m^{4}=9 m^{2}+9 m^{4}$
$3 m^{2}=1$
$m=\pm \frac{1}{\sqrt{3}}$
$\therefore$ tangent is
$y=\frac{1}{\sqrt{3}} x+\sqrt{3}$
or $\quad y=-\frac{1}{\sqrt{3}} x-\sqrt{3}$
(it will be used) (rejected)
$m=\frac{1}{\sqrt{3}}$
for Parabola $\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right) \equiv(3,2 \sqrt{3})$
$(c, d)$
for Circle $\quad y=\frac{1}{r} x+\sqrt{3} \quad \& \quad(x-3)^{2}+y^{2}=9$
$y=\frac{1}{\sqrt{3}} x+\sqrt{3}$
solving, $(x-3)^{2}+\left(\frac{1}{\sqrt{3}} x+\sqrt{3}\right)^{2}=9$ mathB
$x^{2}+9-6 x+\frac{1}{3} x^{2}+3+2 x=9$
$\frac{4}{3} x^{2}-4 x+3=0$
$4 x^{2}-12 x+9=0$
$4 x^{2}-6 x-6 x+9=0$
$2 x(2 x-3)-3(2 x-3)=0$
$(2 x-3)(2 x-3)=0$
$x=\frac{3}{2}$
$\therefore \quad y=\frac{1}{\sqrt{3}}\left(\frac{3}{2}\right)+\sqrt{3}$
$(a, b) \equiv\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)$
$y=\frac{3 \sqrt{3}}{2}$
$2(a+c)=2\left(\frac{3}{2}+3\right)$
$=2\left(\frac{3}{2}+\frac{6}{2}\right)$
$=9$