A particle is projected


A particle is projected with velocity $v_{0}$ along $x$-axis. A damping force is acting on the particle which is proportional to the square of the distance from the origin i.e., ma $=-\alpha x^{2} . .$ The distance at which the particle stops :

  1. $\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{2}}$

  2. $\left(\frac{2 v_{0}}{3 \alpha}\right)^{\frac{1}{3}}$

  3. $\left(\frac{2 v_{0}^{2}}{3 \alpha}\right)^{\frac{1}{2}}$

  4. $\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$

Correct Option: , 4


$\mathrm{F}=-\alpha \mathrm{x}^{2}$

$\mathrm{ma}=-\alpha \mathrm{x}^{2}$

$a=\frac{-\alpha x^{2}}{m}$

$\frac{\mathrm{vdv}}{\mathrm{dx}}=-\frac{\alpha}{m} \mathrm{x}^{2}$

$\int_{v_{0}}^{0} v d v=\int_{0}^{x}-\frac{\alpha}{m} x^{2} d x$


$\frac{-v_{0}^{2}}{2}=-\frac{\alpha}{m} \frac{x^{3}}{3}$

$x=\left(\frac{3 m v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$

Option(4) is most suitable option as (m) is not given in any option

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now