A planar loop of wire rotates in a uniform magnetic field. Initially, at $t=0$, the plane of the loop is perpendicular to the magnetic field. If it rotates with a period of $10 \mathrm{~s}$ about an axis in its plane then the magnitude of induced emf will be maximum and minimum, respectively at:
Correct Option: , 4
(4) We have given, time period, $T=10 \mathrm{~s}$
$\therefore \quad$ Angular velocity, $\omega=\frac{2 \pi}{10}=\frac{\pi}{5}$
Magnetic flux, $\phi(t)=B A \cos \omega t$
Emf induced, $E=\frac{-d \phi}{d t}=B A \omega \sin \omega t=B A \omega \sin (\omega t)$
Induced emf, $|\varepsilon|$ is maximum when $\omega t=\frac{\pi}{2}$
$\Rightarrow t=\frac{\pi}{\frac{2}{\frac{\pi}{5}}}=2.5 \mathrm{~s}$
For induced emf to be minimum i.e zero
$\omega t=\pi \quad \Rightarrow \quad t=\frac{\pi}{\frac{\pi}{5}}=5 \mathrm{~s}$
$\therefore$ Induced emf is zero at $\mathrm{t}=5 \mathrm{~s}$