A tower subtends an angle α at a point A in the plane of its base

Question:

A tower subtends an angle α at a point A in the plane of its base and the angles of depression of the foot of the tower at a point b metres just above A is β. Prove that the height of the tower is b tan α cot β.

 

Solution:

Let  be the height of tower. The tower CD subtends an angle  at a point. And the angle of depression of foot of tower at a point b meter just above  is. Let  and.

Here we have to prove height of tower is 

We have the corresponding figure as follows

So we use trigonometric ratios.

In,

$\Rightarrow \quad \tan \beta=\frac{A B}{A C}$

$\Rightarrow \quad \tan \beta=\frac{b}{x}$

$\Rightarrow \quad x=\frac{b}{\tan \beta}$

$\Rightarrow \quad x=b \cot \beta$

Again in $\triangle A C D$

$\Rightarrow \quad \tan \alpha=\frac{C D}{A C}$

$\Rightarrow \quad \tan \alpha=\frac{h}{x}$

$\Rightarrow \quad h=x \tan \alpha$

$\Rightarrow \quad h=b \tan \alpha \cot \beta$

Hence the height of tower is $b \tan \alpha \cot \beta$.

 

Leave a comment

Close
faculty

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now