Question:
An alternating current is given by the equation $\mathrm{i}=\mathrm{i}_{1} \sin \omega \mathrm{t}+\mathrm{i}_{2} \operatorname{coscot}$.
The rms current will be :
Correct Option: , 2
Solution:
(2)
$I_{0}=\sqrt{I_{1}^{2}+I_{2}^{2}+2 I_{1} I_{2} \cos \theta}$
$I_{0}=\sqrt{I_{1}^{2}+I_{2}^{2}+2 I_{1} I_{2} \cos 90^{\circ}}$
$I_{0}=\sqrt{I_{1}^{2}+I_{2}^{2}+2 I_{1} I_{2}(0)} \Rightarrow \sqrt{I_{1}^{2}+I_{2}^{2}}$
We, know that
So,
$I_{r m s}=\frac{I_{0}}{\sqrt{2}}$
$I_{r m s}=\frac{\sqrt{I_{1}^{2}+I_{2}^{2}}}{\sqrt{2}}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.