Question:
Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.
Solution:
Molar mass of urea (NH2CONH2) = 2(1 × 14 + 2 × 1) + 1 × 12 + 1 × 16
= 60 g mol−1
0.25 molar aqueous solution of urea means:
1000 g of water contains 0.25 mol = (0.25 × 60)g of urea
= 15 g of urea
That is,
(1000 + 15) g of solution contains 15 g of urea
Therefore, $2.5 \mathrm{~kg}(2500 \mathrm{~g})$ of solution contains $=\frac{15 \times 2500}{1000+15} \mathrm{~g}$
= 36.95 g
= 37 g of urea (approximately)
Hence, mass of urea required = 37 g
Note: There is a slight variation in this answer and the one given in the NCERT textbook.