Choose the correct answer of the following question:
The height of an equilateral triangle is $3 \sqrt{3} \mathrm{~cm}$. Its area is
(a) $6 \sqrt{3} \mathrm{~cm}^{2}$
(b) $27 \mathrm{~cm}^{2}$
(c) $9 \sqrt{3} \mathrm{~cm}^{2}$
(d) $27 \sqrt{3} \mathrm{~cm}^{2}$
Let the side of the equilateral triangle be $x$.
As, area of the equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$\Rightarrow \frac{1}{2} \times$ Base $\times$ Height $=\frac{\sqrt{3}}{4} \times x^{2}$
$\Rightarrow \frac{1}{2} \times x \times 3 \sqrt{3}=\frac{x^{2} \sqrt{3}}{4}$
$\Rightarrow \frac{3 x \sqrt{3}}{2}=\frac{x^{2} \sqrt{3}}{4}$
$\Rightarrow \frac{3 \sqrt{3}}{2}=\frac{x \sqrt{3}}{4}$
$\Rightarrow x=\frac{3 \sqrt{3} \times 4}{2 \sqrt{3}}$
$\Rightarrow x=6 \mathrm{~cm}$
Now, the area of the triangle $=\frac{\sqrt{3}}{4} \times 6^{2}$
$=\frac{\sqrt{3}}{4} \times 36$
$=9 \sqrt{3} \mathrm{~cm}^{2}$
Hence, the correct answer is option (c).
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.