D is any point on the side AC of ΔABC with AB = AC. Show that CD < BD.


D is any point on the side AC of ΔABC with AB AC. Show that CD BD.



Given: In ">ΔABCAB = AC

To prove: CD BD


In ">ΔABC,

Since, AB = AC       (Given)

So, $\angle A B C=\angle A C B$

In $\Delta A B C$ and $\Delta D B C$,

$\angle A B C>\angle D B C$

$\Rightarrow \angle A C B>\angle D B C \quad[$ From (i) $]$

$\Rightarrow B D>C D \quad$ (Side opposite to greater angle is longer.)

$\therefore C D

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now