Question:
Differentiate:
$x^{3} \sec x$
Solution:
To find: Differentiation of $x^{3} \sec x$
Formula used: (i) (uv)' $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
(iii)
$\frac{d \sec x}{d x}=\sec x \tan x$
Let us take $u=x^{3}$ and $v=\sec x$
$u^{\prime}=\frac{d u}{d x}=\frac{d x^{3}}{d x}=3 x^{2}$
$v^{\prime}=\frac{d v}{d x}=\frac{d s e c x}{d x}=\sec x \tan x$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(x^{3} \sec x\right)^{\prime}=3 x^{2} x \sec x+x^{3} x \sec x \tan x$
$=3 x^{2} \sec x+x^{3} \sec x \tan x$
$=x^{2} \sec x(3+x \tan x)$
Ans) $x^{2} \sec x(3+x \tan x)$