Question:
Differentiate the following with respect to x:
$\sin ^{2}(2 x+3)$
Solution:
To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x} \sin ^{2}(a x+b)=2 \sin (a x+b) \frac{d}{d x} \sin (a x+b) \frac{d}{d x}(a x+b)$
Let us take $y=\sin ^{2}(2 x+3)$
So, by using above formula, we have
$\frac{d}{d x} \sin ^{2}(2 x+3)=2 \sin (2 x+3) \frac{d}{d x} \sin (2 x+3) \frac{d}{d x}(2 x+3)=4 \sin (2 x+3) \cos (2 x+3)$
Differentiation of $y=\sin ^{2}(2 x+3)$ is $4 \sin (2 x+3) \cos (2 x+3)$