Question:
Differentiate the following with respect to x:
$\tan ^{3} x$
Solution:
To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used:
$\frac{d}{d x}\left(\tan ^{a} n u\right)=\operatorname{atan}^{a-1} n u \times \frac{d(\tan n u)}{d x} \times \frac{d(n u)}{d x}$ and $\frac{d x^{n}}{d x}=n x^{n-1}$
Let us take $y=\tan ^{3} x$
So, by using the above formula, we have
$\frac{d}{d x} \tan ^{3} x=3 \tan ^{2}(x) \times \frac{d(\tan x)}{d x} \times \frac{d x}{d x}=3 \tan ^{2} x \times\left(\sec ^{2} x\right)$
Differentiation of $y=\tan ^{3} x$ is $3 \tan ^{2} x \times\left(\sec ^{2} x\right)$