Divide 16 into two parts such that twice the squares of the larger part exceeds the square of the smaller part by 164.
Divide 16 into two parts such that twice the squares of the larger part exceeds the square of the smaller part by 164.
Let the larger and smaller parts be $x$ and $y$, respectively.
According to the question:
$x+y=16 \ldots$ (i)
$2 x^{2}=y^{2}+164 \ldots$ (ii)
From (i), we get:
$x=16-y \ldots$ (iii)
From (ii) and (iii), we get:
$2(16-y)^{2}=y^{2}+164$
$\Rightarrow 2\left(256-32 y+y^{2}\right)=y^{2}+164$
$\Rightarrow 512-64 y+2 y^{2}=y^{2}+164$
$\Rightarrow y^{2}-64 y+348=0$
$\Rightarrow y^{2}-(58+6) y+348=0$
$\Rightarrow y^{2}-58 y-6 y+348=0$
$\Rightarrow y(y-58)-6(y-58)=0$
$\Rightarrow(y-58)(y-6)=0$
$\Rightarrow y-58=0$ or $y-6=0$
$\Rightarrow y=6 \quad(\because y<16)$
Putting the value of y in equation (iii), we get:
$x=16-6=10$
Hence, the two natural numbers are 6 and $10 .$