Question:
Divide 27 into two parts such that the sum of their reciprocals is $\frac{3}{20}$.
Solution:
Let the two parts be x and (27 − x).
According to the given condition,
$\frac{1}{x}+\frac{1}{27-x}=\frac{3}{20}$
$\Rightarrow \frac{27-x+x}{x(27-x)}=\frac{3}{20}$
$\Rightarrow \frac{27}{27 x-x^{2}}=\frac{3}{20}$
$\Rightarrow 27 x-x^{2}=180$
$\Rightarrow x^{2}-27 x+180=0$
$\Rightarrow x^{2}-15 x-12 x+180=0$
$\Rightarrow x(x-15)-12(x-15)=0$
$\Rightarrow(x-12)(x-15)=0$
$\Rightarrow x-12=0$ or $x-15=0$
$\Rightarrow x=12$ or $x=15$
When x = 12,
27 − x = 27 − 12 = 15
When x = 15,
27 − x = 27 − 15 = 12
Hence, the required parts are 12 and 15.