Euclid's division lemma sates that for any positive integers a and b,

Question:

Euclid's division lemma sates that for any positive integers a and b, there exist unique integers and r such that a = bq + r, where r must satisfy

(a) 1 < b
(b) 0 < r ≤ b
(c) 0 ≤ r < b
(d) 0 < r < b

 

Solution:

(c) 0 ≤ r < b

Euclid's division lemma states that for any positive integers and b, there exist unique integers and such that a = bq + r,
where r​ must satisfy 0 ≤ r < b

Leave a comment