Evaluate
NOTE: In an expression like this ⇒ $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}$ n represents the upper limit, 1
represents the lower limit , x is the variable expression which we are finding out the sum of and i represents the index of summarization.
(i) $\sum_{n=1}^{10}\left(2+3^{n}\right)$
(ii) $\sum_{k=1}^{n}\left[2^{k}+3^{(k-1)}\right]$
(iii) $\sum_{n=1}^{8} 5^{n}$
We can write this as $\left(2+3^{1}\right)+\left(2+3^{2}\right)+\left(2+3^{3}\right)+\ldots$ to 10 terms
$=(2+2+2+\ldots$ to 10 terms $)+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=2 \times 10+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=20+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
Sum of a G.P. series is represented by the formula $\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}$
when r≠1. ‘Sn’ represents the sum of the G.P. series upto nth terms, ‘a’ represents the first term, ‘r’ represents the common ratio and ‘n’ represents the number of terms.
Here,
a = 3
r = (ratio between the n term and n-1 term) 3
n = 10 terms
$\mathrm{S}_{\mathrm{n}}=3 \times \frac{3^{10}-1}{3-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=3 \times \frac{59049-1}{2}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=3 \times \frac{59048}{2}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=88572$
Thus, sum of the given expression is
$=20+\left(3+3^{2}+3^{3}+\ldots\right.$ to 10 terms $)$
$=20+88572$
$=88592$
(ii) The given expression can be written as,
$\left(2^{1}+3^{1-1}\right)+\left(2^{2}+3^{2-1}\right)+\ldots$ to $n$ terms
$=\left(2+3^{0}\right)+\left(2^{2}+3^{1}\right)+\ldots$ to $n$ terms
$=(2+1)+\left(2^{2}+3\right)+\ldots$ to $n$ terms
$=\left(2+2^{2}+\ldots\right.$ to $\frac{\mathrm{n}}{2}$ terms $)+\left(1+3+\ldots\right.$ to $\frac{\mathrm{n}}{2}$ terms $)$
Sum of a G.P. series is represented by the formula $\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}$
when r≠1. ‘Sn’ represents the sum of the G.P. series upto nth terms, ‘a’ represents the first term, ‘r’ represents the common ratio and ‘n’ represents the number of terms.
Here,
a = 2, 1
r = (ratio between the n term and n-1 term) 2, 3
$\frac{\mathrm{n}}{2}$ terms
$S_{n}=2 \times \frac{2^{\frac{n}{2}}-1}{2-1}+1 \times \frac{3^{\frac{n}{2}}-1}{3-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=2 \times \frac{2^{\frac{n}{2}}-1}{1}+1 \times \frac{3^{\frac{n}{2}}-1}{2}$
$\Rightarrow S_{n}=2^{\frac{n}{2}+1}-2+\frac{3^{\frac{n}{2}}-1}{2}$
(iii) We can rewrite the given expression as
$\left(5^{1}+5^{2}+5^{3}+\ldots\right.$ to 8 terms $)$
Sum of a G.P. series is represented by the formula $S_{n}=a \frac{r^{n}-1}{r-1}$ when r>1. ‘Sn’ represents the sum of the G.P. series upto nth terms, ‘a’ represents the first term, ‘r’ represents the common ratio and ‘n’ represents the number of terms.
Here,
a = 5
r = (ratio between the n term and n-1 term) 5
n = 8 terms
$\mathrm{S}_{\mathrm{n}}=5 \times \frac{5^{8}-1}{5-1}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=5 \times \frac{390625-1}{4}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=5 \times \frac{390624}{4}$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=488280$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,