Question:
Evaluate each of the following:
(i) ${ }^{8} P_{3}$
(ii) ${ }^{10} P_{4}$
(iii) ${ }^{6} P_{6}$
(iv) $P(6,4)$
Solution:
(i) ${ }^{8} P_{3}$
${ }^{n} P_{r}=\frac{n !}{(n-r) !}$
$\therefore{ }^{8} P_{3}=\frac{8 !}{(8-3) !}$
$=\frac{8 !}{5 !}$
$=\frac{8(7)(6)(5 !)}{5 !}$
$=8 \times 7 \times 6$
$=336$
(ii) ${ }^{10} P_{4}=\frac{10 !}{(10-4) !}$
$=\frac{10 !}{6 !}$
$=\frac{10(9)(8)(7)(6 !)}{6 !}$
$=10 \times 9 \times 8 \times 7$
$=5040$
(iii) ${ }^{6} P_{6}=\frac{6 !}{(6-6) !}$
$=\frac{6 !}{0 !}$
$=\frac{6 !}{1}$ (Since, $0 !=1$ )
$=720$
(iv) $P(6,4)$
It can also be written as ${ }^{6} P_{4}$.
${ }^{6} P_{4}=\frac{6 !}{2 !}$
$=\frac{6(5)(4)(3)(2 !)}{2 !}$
$=6 \times 5 \times 4 \times 3$
$=360$