Evaluate the following integrals:

Question:

Evaluate the following integrals:

$\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$

Solution:

Assume $\sqrt{x}=t$

$d(\sqrt{x})=d t$

$\Rightarrow \frac{1}{2 \sqrt{x}} \mathrm{dx}=\mathrm{dt}$

$\Rightarrow \frac{1}{\sqrt{x}} \mathrm{dx}=2 \mathrm{dt}$

Substituting $\mathrm{t}$ and $\mathrm{dt}$

$\Rightarrow 2 \int \sin t d t$

$=-2 \cos t+c$

But $\sqrt{x}=t$

$\Rightarrow 2 \cos (\sqrt{x})+c$

Leave a comment