Question:
Evaluate the following integrals:
$\int\left\{\tan (\log x)+\sec ^{2}(\log x)\right\} d x$
Solution:
Let $I=\int\left[\tan (\log x)+\sec ^{2}(\log x)\right] d x$
$\log x=z \Rightarrow x=e^{z} \Rightarrow d x=e^{z} d z$
$I=\int\left(\tan z+\sec ^{2} z\right) e^{z} d z$
$\mathrm{f}(\mathrm{z})=\tan \mathrm{z} ; \mathrm{f}^{\prime}(\mathrm{z})=\sec ^{2} \mathrm{z}$
We know that, $\int \mathrm{e}^{\mathrm{x}}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})+\mathrm{c}$
$I=x \tan (\log x)+c$