Evaluate the following integrals:


Evaluate $\int \log _{10} \mathrm{x} \mathrm{dx}$


Use the method of integration by parts

$y=\int 1 \times \log _{10} x d x$

$y=\log _{10} x \int d x-\int \frac{d}{d x} \log _{10} x\left(\int d x\right) d x$

$y=x \log _{10} x-\int x \frac{1}{x \log _{e} 10} d x$

$y=x \log _{10} x-\frac{x}{\log _{e} 10}+c$

$y=x\left(\log _{e} x-1\right) \log _{10} e+c$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now