Evaluate the following integrals:
$\int \frac{x^{2} \sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x$
Let I $=\int \frac{x^{2} \sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x$
$\sin ^{-1} x=t$
$\frac{1}{\sqrt{1-x^{2}}} d x=d t$
$I=\int \frac{\sin ^{2} t \times t d t}{1-\sin ^{2} t}$
$=\int \frac{\operatorname{tsin}^{2} t}{\cos ^{2} t} d t$
$=\int t \tan ^{2} t d t$
$=\int t\left(\sec ^{2} t-1\right) d t$
Using integration by parts,
$=\int \operatorname{tsec}^{2} t d t-\int t d t$
$=t \int \sec ^{2} t d t-\int \frac{d}{d t} t \int \sec ^{2} t d t-\frac{t^{2}}{2}$
We know that, $\int \sec ^{2} t d t=\tan t$
$=\operatorname{ttan} t-\int \tan t d t-\frac{t^{2}}{2}$
$=\operatorname{ttan} t-\log |\sec t|-\frac{t^{2}}{2}+c$
$I=\frac{x}{\sqrt{1-x^{2}}} \sin ^{-1} x+\log \left|1-x^{2}\right|-\frac{1}{2}\left(\sin ^{-1} x\right)^{2}+c$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.