Evaluate the following integrals:

Question:

Evaluate the following integrals:

$\int \frac{\cos 4 x-\cos 2 x}{\sin 4 x-\sin 2 x} d x$

Solution:

Assume $\sin 4 x-\sin 2 x=t$

$d(\sin 4 x-\sin 2 x)=d t$

$(\cos 4 x-\cos 2 x) d x=d t$

Put $t$ and dt in given equation we get

$\Rightarrow \int \frac{\mathrm{d} t}{t}$

$=\ln |t|+c$

But $t=\sin 4 x-\sin 2 x$

$=\ln |\sin 4 x-\sin 2 x|+c$

Leave a comment