Evaluate the following integrals:
$\int \frac{\left(x \tan ^{-1} x\right)}{\left(1+x^{2}\right)^{3 / 2}} d x$
Let $I=\int \frac{x \tan ^{-1} x}{\left(1+x^{2}\right)^{\frac{3}{2}}} d x$
$\tan ^{-1} \mathrm{x}=\mathrm{t}$
$\frac{1}{1+x^{2}} d x=d t$
$I=\int \frac{t \tan t}{\sqrt{1+\tan ^{2} t}} d t$
We know that, $\sqrt{1+\tan ^{2} t}=\sec t$
$=\int \frac{\mathrm{t} \tan t}{\sec t} \mathrm{dt}$
$=\int \mathrm{t} \frac{\sin t}{\cos t} \cos t \mathrm{dt}$
$=\int \mathrm{t} \sin \mathrm{t} \mathrm{dt}$
Using integration by parts,
$=\mathrm{t} \int \sin \mathrm{t} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{t} \int \sin \mathrm{t} \mathrm{dt}$
$=-t \cos t+\int \cos t d t$
$=-t \cos t+\sin t+c$
Substitute value for $\mathrm{t}$
$I=\frac{\tan ^{-1} x}{\sqrt{1+x^{2}}}+\frac{x}{\sqrt{1+x^{2}}}+c$