Question:
Evaluate the following integrals:
$\int(4 x+2) \sqrt{x^{2}+x+1} d x$
Solution:
Here $(4 x+2)$ can be written as $2(2 x+1)$
Now assume, $x^{2}+x+1=t$
$d\left(x^{2}+x+1\right)=d t$
$(2 x+1) d x=d t$
$\Rightarrow \int 2(2 x+1) \sqrt{x^{2}+x+1} d x$
$\Rightarrow \int 2 \sqrt{t} d t$
$\Rightarrow \int 2 t^{1 / 2} \cdot d t$
$\Rightarrow \frac{4 \mathrm{t}^{\frac{3}{2}}}{3}+\mathrm{C}$
But $t=x^{2}+x+1$
$\Rightarrow \frac{4\left(x^{2}+x+1\right)^{3 / 2}}{3}+C$