Question:
Evaluate the following integrals:
$\int 2 x^{3} e^{x^{2}} d x$
Solution:
Let $\mathrm{I}=\int 2 \mathrm{x}^{3} \mathrm{e}^{\mathrm{x}^{2}} \mathrm{dx}$
Put $x^{2}=t$
$2 x d x=d t$
$I=\int t e^{t} d t$
Using integration by parts,
$=\mathrm{t} \int \mathrm{e}^{\mathrm{t}} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{t} \int \mathrm{e}^{\mathrm{t}} \mathrm{dt}$
We have, $\int e^{x} d x=e^{x}$
$=t e^{t}-e^{t}+c$
$=e^{t}(t-1)+c$
Substitute value for $t$,
$I=e^{x^{2}}\left(x^{2}-1\right)+c$