Question:
Evaluate $\int \frac{1}{1+x+x^{2}+x^{3}} d x$
Solution:
$=\int \frac{d x}{1+x+x^{2}+x^{3}}=\int \frac{d x}{(1+x)\left(1+x^{2}\right)}$
We can write the integral as follows,
$=\int\left[\frac{d x}{2(x+1)}\right]-\int\left[\frac{x-1}{2\left(x^{2}+1\right)} d x\right]=\frac{1}{2} \log (x+1)-\frac{1}{2}\left[\int \frac{x d x}{x^{2}+1}-\int \frac{d x}{x^{2}+1}\right]$
$=\frac{1}{2} \log (x+1)-\frac{1}{2}\left[\log \frac{\left(x^{2}+1\right)}{2}-\tan ^{-1} x\right]+c$