Question:
Evaluate the following integrals:
$\int \sin x \log (\cos x) d x$
Solution:
Let $\mathrm{I}=\int \sin \mathrm{x} \log (\cos \mathrm{x}) \mathrm{dx}$
Put $\cos x=t$
$-\sin x d x=d t$
$I=\int-\log t d t$
Using integration by parts,
$=\int 1 \times-\log t d t$
$=-\left(\log \mathrm{t} \int \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}} \log \mathrm{t} \int 1 \mathrm{dt}\right)$
$=-\left(\mathrm{t} \log \mathrm{t}-\int \frac{1}{\mathrm{t}} \times \mathrm{t} \mathrm{dt}\right)$
$=-\left(\mathrm{t} \log \mathrm{t}-\int \mathrm{dt}\right)$
$=-(\mathrm{t} \log \mathrm{t}-\mathrm{t})+\mathrm{c}$
$=\mathrm{t}(1-\log \mathrm{t})+\mathrm{c}$
Replace t by $\cos x$
$I=\cos x(1-\log (\cos x))+c$