Evaluate the following integrals:
$\int \frac{x^{2}}{x^{2}+6 x+12} d x$
Given $I=\int \frac{x^{2}}{x^{2}+6 x+12} d x$
Expressing the integral $\int \frac{\mathrm{P}(\mathrm{x})}{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}} \mathrm{dx}=\int \mathrm{Q}(\mathrm{x}) \mathrm{dx}+\int \frac{\mathrm{R}(\mathrm{x})}{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}} \mathrm{dx}$
$\Rightarrow \int \frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+6 \mathrm{x}+12} \mathrm{dx}=\int\left(\frac{-6 \mathrm{x}-12}{\mathrm{x}^{2}+6 \mathrm{x}+12}+1\right) \mathrm{dx}$
$=-6 \int \frac{x+2}{x^{2}+6 x+12} d x+\int 1 d x$
Consider $\int \frac{x+2}{x^{2}+6 x+12} d x$
Let $x+2=1 / 2(2 x+6)-1$ and split,
$\Rightarrow \int \frac{x+2}{x^{2}+6 x+12} d x=\int\left(\frac{(2 x+6)}{2\left(x^{2}+6 x+12\right)}-\frac{1}{\left(x^{2}+6 x+12\right)}\right) d x$
$=\int \frac{x+3}{x^{2}+6 x+12} d x-\int \frac{1}{x^{2}+6 x+12} d x$
Consider $\int \frac{x+3}{x^{2}+6 x+12} d x$
Let $u=x^{2}+6 x+12 \rightarrow d x=\frac{1}{2 x+6} d u$
$\Rightarrow \int \frac{\mathrm{x}+3}{\left(\mathrm{x}^{2}+6 \mathrm{x}+12\right)} \mathrm{dx}=\int \frac{\mathrm{x}+3}{\mathrm{u}} \frac{1}{2 \mathrm{x}+6} \mathrm{du}$
$=\int \frac{1}{2 \mathrm{u}} \mathrm{du}$
We know that $\int \frac{1}{x} d x=\log |x|+c$
$\Rightarrow \frac{1}{2} \int \frac{1}{\mathrm{u}} \mathrm{du}=\frac{\log |\mathrm{u}|}{2}=\frac{\log \left|\mathrm{x}^{2}+6 \mathrm{x}+12\right|}{2}$
Now consider $\int \frac{1}{x^{2}+6 x+12} d x$
$\Rightarrow \int \frac{1}{x^{2}+6 x+12} d x=\int \frac{1}{(x+3)^{2}+3} d x$
Let $u=\frac{x+3}{\sqrt{3}} \rightarrow d x=\sqrt{3} d u$
$\Rightarrow \int \frac{1}{(x+3)^{2}+3} d x=\frac{\sqrt{3}}{3 u^{2}+3}$
$=\frac{1}{\sqrt{3}} \int \frac{1}{u^{2}+1} d u$
We know that $\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+c$
$\Rightarrow \frac{1}{\sqrt{3}} \int \frac{1}{\mathrm{u}^{2}+1} \mathrm{du}=\frac{\tan ^{-1} \mathrm{u}}{\sqrt{3}}=\frac{\tan ^{-1}\left(\frac{\mathrm{x}+3}{\sqrt{3}}\right)}{\sqrt{3}}$
Then,
$\Rightarrow \int \frac{x+2}{x^{2}+6 x+12} d x=\int \frac{x+3}{x^{2}+6 x+12} d x-\int \frac{1}{x^{2}+6 x+12} d x$
$=\frac{\log \left|x^{2}+6 x+12\right|}{2}-\frac{\tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)}{\sqrt{3}}$
Then,
$\Rightarrow \int \frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+6 \mathrm{x}+12} \mathrm{dx}=-6 \int \frac{\mathrm{x}+2}{\mathrm{x}^{2}+6 \mathrm{x}+12} \mathrm{dx}+\int 1 \mathrm{dx}$
We know that $\int 1 \mathrm{dx}=\mathrm{x}+\mathrm{c}$
$\Rightarrow-6 \int \frac{x+2}{x^{2}+6 x+12} d x+\int 1 d x$
$=-3 \log \left|x^{2}+6 x+12\right|+\frac{6 \tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)}{\sqrt{3}}+x+c$
$=-3 \log \left|x^{2}+6 x+12\right|+2 \cdot \sqrt{3} \tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)+x+c$
$\therefore \mathrm{I}=\int \frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+6 \mathrm{x}+12} \mathrm{dx}=-3 \log \left|\mathrm{x}^{2}+6 \mathrm{x}+12\right|+2 \cdot \sqrt{3} \tan ^{-1}\left(\frac{\mathrm{x}+3}{\sqrt{3}}\right)+\mathrm{x}+\mathrm{c}$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,