Evaluate the following integrals:

Question:

Evaluate: $\int \frac{\sin \sqrt{x}}{\sqrt{x}} \mathrm{dx}$

Solution:

let $\sqrt{x}=t$

Differentiating on both sides we get,

$\frac{1}{2 \sqrt{x}} d x=d t$

$\frac{1}{\sqrt{x}} d x=2 d t$

substituting it in $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$ we get,

$=\int 2 \sin t d t$

$=-2 \cos t+c$

$=-2 \cos \sqrt{x}+c$

Leave a comment