Evaluate the following integrals:

Question:

Evaluate: $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$.

Solution:

let $\sqrt{x}=t$

Differentiating on both sides we get,

$\frac{1}{2 \sqrt{x}} d x=d t$

$\frac{1}{\sqrt{x}} d x=2 \mathrm{dt}$

substituting it in $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$ we get,

$=\int 2 \cos t d t$

$=2 \sin t+c$

$=2 \sin \sqrt{x}+c$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now