Question:
Evaluate the following integrals:
$\int \frac{\operatorname{cosec} x}{\log \tan \frac{x}{2}} d x$
Solution:
Assume $\log \left(\tan \frac{x}{2}\right)=\mathrm{t}$
$d\left(\log \left(\tan \frac{x}{2}\right)\right)=d t$
(use chain rule to differentiate)
$\Rightarrow \frac{\sec ^{2} \frac{x}{2}}{\tan \frac{\frac{x}{2}}{2}} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}} d x=d t$
$\Rightarrow \operatorname{cosec} x d x=d t$
Put $\mathrm{t}$ and $\mathrm{dt}$ in the given equation we get
$\Rightarrow \int \frac{\mathrm{d} t}{\mathrm{t}}$
$=\ln |\mathrm{t}|+\mathrm{c}$
But $t=\log \left(\tan \frac{x}{2}\right)$
$=\ln \left|\log \left(\tan \frac{x}{2}\right)\right|+c$