Evaluate the following limits:


Evaluate the following limits:

$\lim _{x \rightarrow 0} \frac{\sin x \cos x}{3 x}$



To Find: Limits

NOTE: First Check the form of imit. Used this method if the limit is satisfying any one from 7 indeterminate form.

In this Case, indeterminate Form is $\frac{0}{0}$

Formula used: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

So, by using the above formula, we have

$\lim _{x \rightarrow 0} \frac{\sin x \cos x}{3 x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{\cos x}{3}=\frac{1}{3}$

Therefore, $\lim _{x \rightarrow 0} \frac{\sin x \cos x}{3 x}=\frac{1}{3}$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now