Evaluate the integral:
$\int e^{x} \sqrt{e^{2 x}+1} d x$
Key points to solve the problem:
- Such problems require the use of method of substitution along with method of integration by parts. By method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{dx}\right) \mathrm{dx}$
- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
Let, $I=\int e^{x} \sqrt{e^{2 x}+1} d x$
Let, $e^{x}=t$
Differentiating both sides:
$\Rightarrow e^{x} d x=d t$
Substituting $e^{x}$ with $t$, we have:
We have:
$I=\int \sqrt{t^{2}+1} d t=\int \sqrt{t^{2}+1^{2}} d t$
As I match with the form:
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\therefore I$ $=\frac{t}{2} \sqrt{t^{2}+1}+\frac{1}{2} \log \left|t+\sqrt{t^{2}+1}\right|$
$\Rightarrow I$ $=\frac{t}{2} \sqrt{t^{2}+1}+\frac{1}{2} \log \left|t+\sqrt{t^{2}+1}\right|+C$
Putting the value of $\mathrm{t}$ back:
$\Rightarrow I=\frac{e^{x}}{2} \sqrt{e^{2 x}+1}+\frac{1}{2} \log \left|e^{x}+\sqrt{e^{2 x}+1}\right|+C$