Evaluate the integral:
$\int \frac{2 x-3}{x^{2}+6 x+13} d x$
$I=\int \frac{2 x-3}{x^{2}+6 x+13} d x$
As we can see that there is a term of $x$ in numerator and derivative of $x^{2}$ is also $2 x$. So there is a chance that we can make a substitution for $x^{2}+6 x+13$ and I can be reduced to a fundamental integration.
As $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}+6 \mathrm{x}+13\right)=2 \mathrm{x}+6$
$\therefore$ Let, $2 x-3=A(2 x+6)+B$
$\Rightarrow 2 x-3=2 A x+6 A+B$
On comparing both sides -
We have,
$2 A=2 \Rightarrow A=1$
$6 A+B=-3 \Rightarrow B=-3-6 A=-9$
Hence,
$I=\int \frac{(2 x+6)-9}{x^{2}+6 x+13} d x$
$\therefore I=\int \frac{2 x+6}{x^{2}+6 x+13} d x-9 \int \frac{1}{x^{2}+6 x+13} d x$
Let, $I_{1}=\int \frac{2 x+6}{x^{2}+6 x+13} d x$ and $I_{2}=\int \frac{1}{x^{2}+6 x+13} d x$
Now, $I=I_{1}-9 I_{2} \ldots$ eqn $I$
We will solve $I_{1}$ and $I_{2}$ individually.
As, $I_{1}=\int \frac{2 x+6}{x^{2}+6 x+13} d x$
Let $u=x^{2}+6 x+13 \Rightarrow d u=(2 x+6) d x$
$\therefore$ I $_{1}$ reduces to $\int \frac{\mathrm{du}}{\mathrm{u}}$
Hence,
$I_{1}=\int \frac{d u}{u}=\log |u|+C\left\{\because \int \frac{d x}{x}=\log |x|+C\right\}$
On substituting value of $u$, we have:
$I_{1}=\log \left|x^{2}+6 x+13\right|+C \ldots$ eqn 2
As, $I_{2}=\int \frac{1}{x^{2}+6 x+13} d x$ and we don't have any derivative of function present in denominator. $\therefore$ we will use some special integrals to solve the problem.
As denominator doesn't have any square root term. So one of the following two integrals will solve the problem.
i) $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$ ii) $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Now we have to reduce $I_{2}$ such that it matches with any of above two forms.
We will make to create a complete square so that no individual term of $x$ is seen in denominator.
$\therefore I_{2}=\int \frac{1}{x^{2}+6 x+13} d x$
$\Rightarrow I_{2}=\int \frac{1}{\left\{x^{2}+2(3) x+(3)^{2}\right\}+13-(3)^{2}} d x$
Using: $a^{2}+2 a b+b^{2}=(a+b)^{2}$
We have:
$I_{2}=\int \frac{1}{(x+3)^{2}+(2)^{2}} d x$
$\mathrm{I}_{2}$ matches with $\int \frac{1}{\mathrm{x}^{2}+\mathrm{a}^{2}} \mathrm{dx}=\frac{1}{\mathrm{a}} \tan ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}$
$\therefore I_{2}=\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+C \ldots$ eqn 3
From eqn 1:
$I=I_{1}-9 I_{2}$
Using eqn 2 and eqn 3 :
$I=\log \left|x^{2}+6 x+13\right|-9 \frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+C$
$I=\log \left|x^{2}+6 x+13\right|-\frac{9}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+C$
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,