Evaluate the integral:
$\int \sqrt{16 x^{2}+25} d x$
Key points to solve the problem:
- Such problems require the use of the method of substitution along with a method of integration by parts. By the method of integration by parts if we have $\int \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{x}) \int \mathrm{g}(\mathrm{x}) \mathrm{dx}-\int \mathrm{f}^{\prime}(\mathrm{x})\left(\int \mathrm{g}(\mathrm{x}) \mathrm{dx}\right) \mathrm{dx}$
- To solve the integrals of the form: $\int \sqrt{a x^{2}+b x+c} d x$ after applying substitution and integration by parts we have direct formulae as described below:
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
Let, $I=\int \sqrt{16 x^{2}+25} d x$
We have:
$I=\int \sqrt{16 x^{2}+25} d x=\int \sqrt{(4 x)^{2}+5^{2}} d x$
$\Rightarrow I=\int 4 \sqrt{x^{2}+\left(\frac{5}{4}\right)^{2}} d x$
As I match with the form:
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\therefore I=4\left\{\frac{x}{2} \sqrt{x^{2}+\left(\frac{5}{4}\right)^{2}}+\frac{\frac{25}{16}}{2} \log \left|x+\sqrt{x^{2}+\left(\frac{5}{4}\right)^{2}}\right|\right\}$
$\Rightarrow I=\frac{x}{2} \sqrt{16 x^{2}+25}+\frac{25}{8} \log \left|x+\sqrt{x^{2}+\frac{25}{16}}\right|+C$