Question:
f (x) = |x| + |x – 1| at x = 1
Solution:
Checking the right hand and left hand limits for the given function, we have
$\lim _{x \rightarrow 1^{-}} f(x)=|x|+|x-1|=\lim _{h \rightarrow 0}|1-h|+|1-h-1|$
$=|1-0|+|1-0-1|=1+0=1$
$\lim _{x \rightarrow 1} f(x)=|x|+|x-1|$
$=\lim _{h \rightarrow 0}|1+h|+|1+h-1|=1+0=1$
$\lim _{x \rightarrow 1} f(x)=|x|+|x-1|=|1|+|1-1|=1+0=1$
Now, as
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)$
Thus, f(x) is continuous at x = 1.