Question:
Factorize:
$(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$
Solution:
$(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$
Putting $(a-b)=x,(b-c)=y$ and $(c-a)=z$, we get:
$(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$
$=x^{3}+y^{3}+z^{3} \quad[$ Where $(x+y+z)=(a-b)+(b-c)+(c-a)=0]$
$=3 x y z \quad\left[(x+y+z)=0 \Rightarrow x^{3}+y^{3}+z^{3}=3 x y z\right]$
$=3(a-b)(b-c)(c-a)$