Find $\frac{d y}{d x}$
$y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0
The given relationship is $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$
$y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$
$\Rightarrow \sec y=\frac{1}{2 x^{2}-1}$
$\Rightarrow \cos y=2 x^{2}-1$
$\Rightarrow 2 x^{2}=1+\cos y$
$\Rightarrow 2 x^{2}=2 \cos ^{2} \frac{y}{2}$
$\Rightarrow x=\cos \frac{y}{2}$
Differentiating this relationship with respect to x, we obtain
$\frac{d}{d x}(x)=\frac{d}{d x}\left(\cos \frac{y}{2}\right)$
$\Rightarrow 1=-\sin \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right)$
$\Rightarrow \frac{-1}{\sin \frac{y}{2}}=\frac{1}{2} \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-\cos ^{2} \frac{y}{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.