Find the 10th and nth terms of the GP $-\frac{3}{4}, \frac{1}{2},-\frac{1}{3}, \frac{2}{9} \ldots$
Given GP is $-\frac{3}{4}, \frac{1}{2},-\frac{1}{3}, \frac{2}{9} \ldots .$
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where $r$ is the common ratio.
The first term in the given GP, $\mathrm{a}=\mathrm{a}_{1}=-\frac{3}{4}$
The second term in $\mathrm{GP}, \mathrm{a}_{2}=\frac{1}{2}$
Now, the common ratio, $\mathrm{r}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}$
$r=-\frac{\frac{1}{2}}{\frac{3}{4}}=-\frac{2}{3}$
Now, $n^{\text {th }}$ term of GP is, $a_{n}=a r^{n-1}$
So, the $10^{\text {th }}$ term. $a_{10}=a r^{9}$
$a_{10}=a r^{9}=\left(-\frac{3}{4}\right)\left(-\frac{2}{3}\right)^{9}=\frac{128}{6561}$
Now, the required $\mathrm{n}^{\text {th }}$ term, $\mathrm{an}=\mathrm{ar}^{\mathrm{n}-1}$
$a_{n}=\left(-\frac{3}{4}\right)\left(-\frac{2}{3}\right)^{n-1}=\left(\frac{9}{8}\right)\left(-\frac{2}{3}\right)^{n}$
Hence, the $10^{\text {th }}$ term, $\mathrm{a}_{10}=\frac{128}{6561}$ and $\mathrm{n}^{\text {th }}$ term,
$a_{n}=\left(\frac{9}{8}\right)\left(-\frac{2}{3}\right)^{n}$