Question:
Find the $7^{\text {th }}$ and $n$th terms of the GP $0.4,0.8,1.6 \ldots$
Solution:
Given GP is 0.4, 0.8, 1.6….
The given GP is of the form, $a, a r, a r^{2}, a r^{3} \ldots$
Where $r$ is the common ratio.
First term in the given GP, $a_{1}=a=0.4$
Second term in GP, $a_{2}=0.8$
Now, the common ratio, $\mathrm{r}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}$
$r=\frac{0.8}{0.4}=2$
Now, $\mathrm{n}^{\text {th }}$ term of GP is, $\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So, the $7^{\text {th }}$ term in the GP,
$a_{7}=a r^{6}$
$=0.4 \times 2^{6}$
= 25.6
$\mathrm{n}^{\text {th }}$ term in the GP,
$a_{n}=a r^{n-1}$
$=(0.4)(2)^{n-1}$
$=(0.2) 2^{n}$
Hence, $7^{\text {th }}$ term $=25.6$ and $\mathrm{n}^{\text {th }}$ term $=(0.2) 2^{\mathrm{n}}$