Find the number of solutions of


Find the number of solutions of $z^{2}+|z|^{2}=0$


Let $z=x+i y$.



$\therefore z^{2}+|z|^{2}=0$

$\Rightarrow(x+i y)^{2}+\left(\sqrt{x^{2}+y^{2}}\right)^{2}=0$

$\Rightarrow x^{2}+i^{2} y^{2}+2 i x y+x^{2}+y^{2}=0$

$\Rightarrow x^{2}-y^{2}+2 i x y+x^{2}+y^{2}=0$

$\Rightarrow 2 x^{2}+2 i x y=0$

$\Rightarrow 2 x(x+i y)=0$

$\Rightarrow x=0$ or $x+i y=0$

$\Rightarrow x=0$ or $z=0$

For $x=0, z=0+i y$

Thus, there are infinitely many solutions of the form $z=0+i y, y \in \Re$.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now