Find the peak current and resonant frequency of the following circuit (as shown in figure)
Correct Option: , 4
(4)
Peak current in series LCR CKT
$i=\frac{v_{0}}{z} \Rightarrow \frac{30}{\sqrt{\left(x_{L}-x_{C}\right)^{2}+R^{2}}}$
$i=\frac{30}{\sqrt{(10-100)^{2}+(120)^{2}}}$
$i \Rightarrow \frac{30}{150} \Rightarrow \frac{1}{5} \Rightarrow 0.2 \mathrm{Amp}$
$\therefore X_{L}=\omega \times L$
$\Rightarrow(100)\left(100 \times 10^{-3}\right) \Rightarrow 10$
$X_{L}=\frac{1}{\omega \times c} \Rightarrow \frac{1}{100 \times 100 \times 10^{-6}}$
$\Rightarrow \frac{10^{6}}{10^{4}} \Rightarrow 100$
Resonance frequency $\omega=\frac{1}{\sqrt{L C}}$
$\omega=\frac{1}{\sqrt{100 \times 10^{-3} \times 100 \times 10^{-6}}} \Rightarrow \frac{1}{\sqrt{10^{-5}}}$
$\therefore \omega=2 \pi F$
$F=\frac{1}{2 \pi} \times \frac{1}{\sqrt{10^{-5}}}$
$\Rightarrow \frac{1}{2 \pi} \sqrt{10^{5}}$
$\Rightarrow \frac{100}{2 \pi} \sqrt{10}$
$\Rightarrow 50 \mathrm{~Hz}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.