Find the perimeter and area of the quadrilateral ABCD in which AB = 21 cm, ∠BAC = 90°, AC = 20 cm, CD = 42 cm and AD = 34 cm.
In right angled ∆ABC,
$B C^{2}=A B^{2}+A C^{2}$ (Pythagoras Theorem)
$\Rightarrow B C^{2}=21^{2}+20^{2}$
$\Rightarrow B C^{2}=441+400$
$\Rightarrow B C^{2}=841$
⇒ BC = 29 cm
Area of $\triangle A B C=\frac{1}{2} \times A B \times A C$
$=\frac{1}{2} \times 21 \times 20$
$=210 \mathrm{~cm}^{2}$ ....(1)
$\ln \Delta A C D$
The sides of the triangle are of length 20 cm, 34 cm and 42 cm.
∴ Semi-perimeter of the triangle is
$s=\frac{20+34+42}{2}=\frac{96}{2}=48 \mathrm{~cm}$
∴ By Heron's formula,
Area of $\Delta A C D=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{48(48-20)(48-34)(48-42)}$
$=\sqrt{48(28)(14)(6)}$
$=336 \mathrm{~cm}^{2}$ $\ldots(2)$
Thus,
Area of quadrilateral ABCD = Area of ∆ABC + Area of ∆ACD
$=(210+336) \mathrm{cm}^{2}$
$=546 \mathrm{~cm}^{2}$
Also,
Perimeter of quadrilateral ABCD = (34 + 42 + 29 + 21) cm
= 126 cm
Hence, the perimeter and area of quadrilateral $A B C D$ is $126 \mathrm{~cm}$ and $546 \mathrm{~cm}^{2}$, respectively.