Question:
Find the sum of all integers between 50 and 500 which are divisible by 7.
Solution:
The integers between 50 and 500 that are divisible by 7 are:
56, 63...497
Here, we have:
$a=56$
$d=7$
$a_{n}=497$
$\Rightarrow 56+(n-1) 7=497$
$\Rightarrow 7 n-7=441$
$\Rightarrow 7 n=448$
$\Rightarrow n=64$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{64}=\frac{64}{2}[2 \times 56+(64-1) 7]$
$\Rightarrow S_{64}=32[2 \times 56+63 \times 7]=17696$