Question:
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Solution:
The two-digit numbers which when divided by 4 yield 1 as remainder are 13, 17....97.
$\therefore a=13, d=4, a_{n}=97$
$\therefore a_{n}=a+(n-1) d$
$\Rightarrow 97=13+(n-1) 4$
$\Rightarrow 84=4 n-4$
$\Rightarrow 88=4 n$
$\Rightarrow 22=n \ldots(1)$
Also, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{22}=\frac{22}{2}[2 \times 13+(22-1) \times 4] \quad($ From $(1))$
$\Rightarrow S_{22}=11[110]=1210$