Find the sum of n terms of the following series:


Find the sum of n terms of the following series:




Let the given series be $X=\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots$





$a=1, d=0$

$S_{1}=4 \times \frac{n}{2}[2 \times 1+(n-1) \times 0] \quad\left(S_{n}=\frac{n}{2}(2 a+(n-1) d)\right)$

$\Rightarrow S_{1}=4 n$


$a=1, d=2-1=1$

$S_{2}=\frac{1}{n} \times \frac{n}{2}[2 \times 1+(n-1) \times 1]$



Thus, $S=S_{1}-S_{2}=4 n-\frac{1}{2}[1+n]$

$S=\frac{8 n-1-n}{2}=\frac{7 n-1}{2}$

Hence, the sum of $n$ terms of the series is $\frac{7 n-1}{2}$.

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now