Find the value


Let $f(x)= \begin{cases}\frac{x-|x|}{x}, & x \neq 0 \\ 2, & x=0\end{cases}$

Show that $\lim _{x \rightarrow 0} f(x)$ does not exist



Left Hand Limit(L.H.L.):

$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x-|x|}{x}$

$=\lim _{x \rightarrow 0^{-}} \frac{x-(-x)}{x}$

$=\lim _{x \rightarrow 0^{-}} \frac{x+x}{x}$

$=\lim _{x \rightarrow 0^{-}} \frac{2 x}{x}$

$=\lim _{x \rightarrow 0^{-}} 2$


Right Hand Limit(R.H.L.):

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x-|x|}{x}$

$=\lim _{x \rightarrow 0^{+}} \frac{x-(x)}{x}$

$=\lim _{x \rightarrow 0^{+}} \frac{0}{x}$

$=\lim _{x \rightarrow 0^{+}} 0$


$\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$

Thus, $\lim _{x \rightarrow 0} f(x)$ does not exist.


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now