Question:
Find the values of x for which the distance between the points P(x, 4) and Q(9, 10) is 10 units.
Solution:
The given points are P(x, 4) and Q(9, 10).
$\therefore P Q=\sqrt{(x-9)^{2}+(4-10)^{2}}$
$=\sqrt{(x-9)^{2}+(-6)^{2}}$
$=\sqrt{x^{2}-18 x+81+36}$
$=\sqrt{x^{2}-18 x+117}$
$\because P Q=10$
$\therefore \sqrt{x^{2}-18 x+117}=10$
$\Rightarrow x^{2}-18 x+117=100 \quad$ (Squaring both sides)
$\Rightarrow x^{2}-18 x+17=$
$\Rightarrow x^{2}-17 x-x+17=0$
$\Rightarrow x(x-17)-1(x-17)=0$
$\Rightarrow(x-17)(x-1)=0$
$\Rightarrow x-17=0$ or $x-1=0$
$\Rightarrow x=17$ or $x=1$
Hence, the values of x are 1 and 17.