Question:
For what values of k are the points A(8, 1), B(3, −2k) and C(k, −5) collinear?
Solution:
Let A(x1 = 8, y1 = 1), B(x2 = 3, y2 = −2k) and C(x3 = k, y3 = −5) be the given points.
The given points are collinear if
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$\Rightarrow 8(-2 k+5)+3(-5-1)+k(1+2 k)=0$
$\Rightarrow-16 k+40-18+k+2 k^{2}=0$
$\Rightarrow 2 k^{2}-15 k+22=0$
$\Rightarrow 2 k^{2}-11 k-4 k+22=0$
$\Rightarrow k(2 k-11)-2(2 k-11)=0$
$\Rightarrow(k-2)(2 k-11)=0$
$\Rightarrow k=2$ or $k=\frac{11}{2}$
Hence, $k=2$ or $k=\frac{11}{2}$.