(i) How many terms are there in the A.P.
7, 10, 13, ... 43?
(ii) How many terms are there in the A.P.
$-1,-\frac{5}{6},-\frac{2}{3},-\frac{1}{2}, \ldots, \frac{10}{3} ?$
(i) 7, 10, 13...43
Here, we have:
a = 7
$d=(10-7)=3$
$a_{n}=43$
Let there be n terms in the given A.P.
Also, $a_{n}=a+(n-1) d$
$\Rightarrow 43=7+(n-1) 3$
$\Rightarrow 36=(n-1) 3$
$\Rightarrow 12=(n-1)$
$\Rightarrow 13=n$
Thus, there are 13 terms in the given A.P.
(ii) $-1,-\frac{5}{6},-\frac{2}{3},-\frac{1}{2}, \ldots, \frac{10}{3}$
Here, we have:
$a=-1$
$d=\left(\frac{-5}{6}-(-1)\right)=\left(1-\frac{5}{6}\right)=\frac{1}{6}$
$a_{n}=\frac{10}{3}$
Let there be n terms in the given A.P.
Also, $a_{n}=a+(n-1) d$
$\Rightarrow \frac{10}{3}=-1+(n-1) \frac{1}{6}$
$\Rightarrow \frac{13}{3}=(n-1) \frac{1}{6}$
$\Rightarrow 26=(n-1)$
$\Rightarrow 27=n$
Thus, there are 27 terms in the given A.P.