If $3 \tan \theta=4$, find the value of $\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}$.
Given:
$3 \tan \theta=4$
Therefore,
$\tan \theta=\frac{4}{3}$...(1)
Now, we know that $\tan \theta=\frac{\sin \theta}{\cos \theta}$
Therefore equation (1) becomes
$\frac{\sin \theta}{\cos \theta}=\frac{4}{3}$....(2)
Now, by applying Invertendo to equation (2)
We get,
$\frac{\cos \theta}{\sin \theta}=\frac{3}{4}$
Now, multiplying by 4 on both sides
We get,
$4 \times \frac{\cos \theta}{\sin \theta}=4 \times \frac{3}{4}$
Therefore
$\frac{4 \cos \theta}{\sin \theta}=\frac{3}{1}$
Now by applying dividendo in above equation
We get,
$\frac{4 \cos \theta-\sin \theta}{\sin \theta}=\frac{3-1}{1}$
$\frac{4 \cos \theta-\sin \theta}{\sin \theta}=\frac{2}{1}$...(4)
Now, multiplying by 2 on both sides of equation (3)
We get,
$2 \times \frac{\cos \theta}{\sin \theta}=2 \times \frac{3}{4}$
Therefore
$\frac{2 \cos \theta}{\sin \theta}=\frac{3}{2}$
Now by applying componendo in above equation
We get,
$\frac{2 \cos \theta+\sin \theta}{\sin \theta}=\frac{3+2}{2}$
$\frac{2 \cos \theta+\sin \theta}{\sin \theta}=\frac{5}{2}$...(5)
Now, by dividing equation (4) by equation (5)
We get,
$\frac{\frac{4 \cos \theta-\sin \theta}{\sin \theta}}{\frac{2 \cos \theta+\sin \theta}{\sin \theta}}=\frac{\frac{2}{1}}{\frac{5}{2}}$
Therefore,
$\frac{4 \cos \theta-\sin \theta}{\sin \theta} \times \frac{\sin \theta}{2 \cos \theta+\sin \theta}=\frac{2}{1} \times \frac{2}{5}$
Therefore, on L.H.S $\sin \theta$ cancels and we get,
$\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{2}{1} \times \frac{2}{5}$
Therefore,
$\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{4}{5}$
Hence,
$\frac{4 \cos \theta-\sin \theta}{2 \cos \theta+\sin \theta}=\frac{4}{5}$